Description
In how many ways can you choose k elements out of n elements, not taking order into account? Write a program to compute this number.
Input
The input will contain one or more test cases. Each test case consists of one line containing two integers n (n>=1) and k (0<=k<=n). Input is terminated by two zeroes for n and k.
Output
For each test case, print one line containing the required number. This number will always fit into an integer, i.e. it will be less than 2 31. Warning: Don't underestimate the problem. The result will fit into an integer - but if all intermediate results arising during the computation will also fit into an integer depends on your algorithm. The test cases will go to the limit.
Sample Input
4 210 549 60 0
Sample Output
625213983816
Source
本题题意很明确,就是让求C(n,m)是多少,但传统的组合公式计算过程中会越界,所以采用另一种思路,把组合公式的分子和分母的数字分别存到两个数组中,然后两层循环,分别求出分子和分母的最大公约数,然后约分,这样把分子分母化成最简。最后再采用传统的组合公式就可以了。
代码:
#includeusing namespace std;const int maxn=3000;int up[maxn],down[maxn];//分别存分子和分母的数int gcd(int a,int b){ if(!a) return b; int c; while(b) { c=b; b=a%b; a=c; } return a;}int main(){ int n,m; while(cin>>n>>m&&(m||n)) { if(m>n-m) m=n-m; int temp=n; for(int i=1;i<=m;i++)//根据组合公式把原始的分子分母分别存在数组中 { up[i]=temp--; down[i]=i; } for(int i=1;i<=m;i++)//外层循环代表分母,对分母依次进行约分 for(int j=1;j<=m;j++) { temp=gcd(down[i],up[j]); if(temp>1) { up[j]/=temp; down[i]/=temp; } if(down[i]==1)//分母已经为1,退出,进行下一个分母的约分 break; } int mul=1; for(int i=1;i<=m;i++) mul=mul*up[i]/down[i]; cout< <